
How does EyePort work? 
 

This document provides an in-depth, detailed explanation of the major algorithms working 

behind the interface, including areas of interest, unique areas of interest, head orientation 

times, object detection, radar violation, no-go zones, and dead man switch. This can be 

useful in future research or to any software developer looking into the source code of 

EyePort for further improvements or customisation. 

The content in this document is deemed beyond an average user’s grasp, and so was not 

included in the main user manual. Please note that this software was developed for TOBII 

Pro Glasses 3. It will not work with any other glasses. The document only describes the 

algorithms behind the analysis page. Most are self-created from scratch. 

 

Eye-Tracking Data Formats 
 

Eye-tracking data is stored under the recorded session’s folder. EyePort is only concerned 
with the gazedata.gz and imudata.gz in the folder. Additional checks are performed to verify 

that these files are present. They are stored in the form of compressed JSON (JavaScript 
Object Notation). The JSON files are extracted using Python libraries to fetch the glass data. 

EyePort converts them into an Excel file called Glass Data Export.xlsx for easier access. 
Appropriate writing permissions must be present for the folder (Read-only or Windows 
Controlled Folder Access will cause an error). 

 

 
Figure 1 – Record Folder Structure 

Additionally, the scenevideo.mp4 is the actual recording from the front camera of the 
glasses. The resolution of this video is 1920 × 1080 recorded at 25 frames per second. This 
file is needed for the Playback Data page and still frames for processing Object detection and 
Areas of Interest display sections under the Analyse Data page. 
 
There is an additional bug if the glasses are used in Video Mode or Full Analysis Mode in 



TOBII’s own recording software. Switching between the modes causes a bit in the 
recording.g3 file to flip, causing no gaze circle to be overlayed in the scenevideo.mp4. 
EyePort checks for the bit in the recording.g3 file, ensuring that gaze circles are always 
present for displaying under the Analysis Page section. It will add its own circles from the 
extracted Excel file data onto the still frames if the gaze circles are found to be absent. This is 
a fix only for the Analysis Page but not for the Playback Page. 
 
Overall, four files are needed for complete analysis. Should these files become inaccessible 
at any point, EyePort will raise an error. EyePort creates additional files in the folder, that 
takes some time, but the process is only done once. EyePort will only do the extraction if the 
extracted files are not present. This prevents re-extraction and saves resources on the user’s 
computer. 
 

Areas of Interest Detection 
 

Most algorithms, including detecting areas of interest, occur before extracting frames from the 

video and displaying them on EyePort. Hence, there is a delay after the “Analyze Now” button 

is clicked. They are also located in the Data_Analysis_Rotating_Head.py file. 

To get started, the entire extracted Excel file Glass Data Export.xlsx is analysed in a loop. 

This is important information because if the user’s computer has fewer CPU cores, this 

process will take longer. EyePort must be run on at least Octa Core systems.  EyePort looks 

for intermediate changes in the Gaze 2D coordinates over a fixation time set by the user. 

These are the coordinates of where the eyes are fixed on the 1920 × 1080 scenevideo. The 

values are a pair of decimal values from 0 to 1 in the glass data file. Implicit conversion is 

done from this decimal to the pixel coordinate of the video. 

For example, if the Gaze 2D data is 0.5, 0.5. This signifies a pixel coordinate of 1920 × 0.5 = 

960 in the x-axis and 1080 × 0.5 = 540 in the y-axis. Therefore, the user is looking at the 

centre of the video (or vision). 

 

Figure 2 – Centre Vision Example 

A larger tolerance rectangle of size 96 × 54 pixels is always calculated for the next expected 

gaze coordinate. This is an excellent time to mention that the density of data in the glass 

data file is 100 data points per second (100Hz). Therefore, calculations can be as accurate as 



1/100th of a second or 0.01 seconds. But to prevent instability and incorrect logic errors, the 

fixation time is restricted to only 1/4th of a second or 0.25 seconds. 

If the user’s gaze stays within the tolerance rectangle for more than 25 data points, which 

means a fixation time of 0.25s, the timestamp is recorded for the starting time. Here is an 

overview of the process. 

 

Figure 3 – Areas of Interest Detection 

Fixation Time of 0.5 Second = 50 Data Points 

Fixation Time of 2.5 Seconds = 250 Data Points, and so on. 

Whenever the gaze point exits the tolerance rectangle, one of the following can happen: 

- There were sufficient data points more than the fixation time to signify that the user 

had looked at the object long enough to register it as an Area of Interest. The end 

timestamp is recorded. 

- There were not enough data points to exceed the fixation time. No timestamps are 

recorded. This case is discarded, and the counters are reset. For example, blinks, eye 

saccade movements, etc. 

There were mentions of start and end timestamps before. These are then displayed in the 

tables under the analysis page. These data also help create graphs, calculate the duration of 

how long the area of interest was looked at, determine which frames to extract from the 

video to show the user, and so on. 

Note that the user cannot change the tolerance rectangle dimensions as other dimensions 

of this rectangle were tested and significantly affected the algorithm’s performance. The 

only control the user has is the ability to adjust the fixation time for this section. The 

algorithm developed for interest areas has proven reliable and flawless in most test cases, 

including tracking slow-moving objects. There were other ways of detecting the areas of 

interest in the previous work term. Complex matrix calculations, single integrations, and 

vector tolerance matching (not discussed in this document) were done in earlier versions of 

EyePort for TOBII Pro Glasses 2. The reason this algorithm was replaced completely was 

because of the following: 



- More Calculations (Potentially slowing down user systems) 

- Higher Chances of Error (If gyroscope calibration was not done correctly) 

- New Glasses had a worse Gyroscope (values starting in the 7-10 degrees/second 

range even if the glasses are stationary) 

- Difficulty Filtering Errors and Calibrating the Gyroscope 

 

Although the new algorithm is better, it has the potential downside of relying only on user 

gaze data to register areas of interest. If the user quickly turns their head whilst still looking 

at the same place in the vision, the new area is not detected (an unlikely scenario, but it is 

possible). This vulnerability was found in the full motion bridge simulator trials that took 

place in November 2023 at the Marine Institute. 

 

 

Figure 4 – Full Motion Bridge Simulator Trials 

Post Synchronization Step 
 

Previously, it was mentioned that the glass data samples were at 100Hz (100 data points per 

second). However, the scenevideo.mp4 file only contains 25 frames per second, restricting 

accuracy to only 1/25th of a second or 0.04 seconds. Because the number of glass data 

points is always greater than the available frames, an additional post-synchronization must 

be done. This is a “lossless synchronization”, meaning that no data is ever lost in syncing the 

two data: video frames and glass data. This step always takes right before the EyePort 

interface is refreshed and only after all algorithms (other than object detection) have 

finished processing. This ensures that algorithms have the most data to work with (video 

frames are not required at this stage). 

The glass data and video frames have their own timestamps. The timestamps of the glass 

data have 7-8 significant digits (Example – 1.234567 seconds is 1234567). These numbers do 

not follow any specific timing interval but are roughly 10ms apart, which matches the 100Hz 

sampling rate of the glasses. One can verify this with the Glass Data Export.xlsx file created 



by EyePort. But video timestamps are different and do follow a timing interval of 0.04 

seconds for 25 fps. Conversion is needed from glass to video timestamps. The two 

timestamps are matched by taking their overall length and ratios. This will spread the video 

frames over the glass data points, as shown in Figure 5. Any non-existent frames needed are 

automatically matched to the nearest frame available. 

Figure 5 – Video Frames vs Glass Data Points 

 

For example, if a glass data point is identified to be an Area of Interest at 25.067 seconds 

(video timestamp and not the glass timestamp) after the post-synchronization step. The two 

closest frames that can be used here are at 25.040 and 25.080 seconds. EyePort will select the 

frame at 25.080 seconds as it is the closest to 25.067 seconds. This way, all Areas of Interest 

are guaranteed to have a frame even if it did not exist at the actual second of the video.  

Green Frame Bug: During development, it was found that sometimes the scenevideo.mp4 is 

not rendered correctly in the first few frames of the video. They were found to be just green 

still frames, indicating an encoder failure at the glass hardware level. Therefore, if an Area of 

Interest is registered within the first few frames of the video (<0.1s), it would have a green 

still frame instead of the actual vision frame. To overcome this, the first 3 frames are 

ignored for processing. Instead, the 4th frame is chosen for the frame image. 
 

Unique Areas of Interest Detection 
 

All detections of areas of interest are stored in a folder called detections under the main 

record folder which are cropped into a smaller image (square dimensions defined by the 

user) from the entire 1920 × 1080 frame. This is used for Unique Areas of Interest Detection. 

Imagine a square box around the gaze point. Notice the square images formed in Figure 6. 

 



Setting a HIGH side length will increase the number of Unique AOIs. However, this may 

falsely mark the same object as different objects. 

Setting a LOW side length radius will decrease the number of Unique AOIs. However, this 

may falsely mark different objects in close proximity as the same object.  

 

Figure 6 – Sample contents of detections folder 

Using a Python library called image_similarity_measures, the areas of interest are 

matched against each other. Similar-looking images are grouped as one object, and the rest 

are left as is. Sequential numbering is taken from Object 1, Object 2, and so on. The 

detection is based on how similar the images are in structure and RGB colour information. 

The user can control the sensitivity of this matching under the Detection Sensitivity control.  

 

Figure 7 – Code for selecting the sensitivity. 

The higher the sensitivity (Figure 7), the matching tolerance increases. The maximum value 

is 0.95, meaning the two images need to have a similarity of 95%. On the other hand, if 0.40 

is selected, the two images need to have a similarity of 40%. 

Manual Mode completely bypasses this algorithm, allowing the user to choose which 

objects are the same, giving full control to the user and ensuring a fully correct human-

verified analysis page. This mode marks all areas of interest as unique and modifies the “Edit 

Names” button to define the unique areas of interest manually.  

Based on Figure 6, it is clear that Object 1,4 is the same while Object 2 is different. Object 3 

may or may not be the same as Objects 1 and 4, but this can be adjusted with the sensitivity 

control or using manual mode altogether. 
 



Blink Detection 
 

Unfortunately, EyePort does not support blink detection. When these events occur, the glass 

data in Glass Data Export.xlsx are not present. Because the extraction algorithm is designed 

only to create rows of data that include the full range of data from various sensors (that 

includes Gaze 2D coordinates). If any of the sensors cannot provide data for a specific 

timestamp, that row is skipped and not created in the Excel file. This means that blinks are 

ignored as the Gaze 2D Coordinates are empty during that time. EyePort also raises an error 

if the participant never wears the glasses for this very reason. Data is omitted this way  

because most algorithms require a steady stream of data points. Additional checking codes 

for such cases could slow down analysis times or create complications during post-

synchronization or frame extraction (needing gaze points). 

 

Figure 8 – Sample Detection of Laptop and Wall 

 

 

 

 

 

 

 

 



Head Orientation Times 
 

This algorithm depends on the gyroscope values in the y-axis from the extracted glass data 

and two values from the user. This is also a loop-based algorithm. 

 

Figure 9 – Code Snippet for Head Orientation Times 

Figure 9 shows a small snippet of the code. The headup,headlevel, and headdown 

lists contain the start and timings of each head orientation. This is where the user needs to 

specify how the participant's head was oriented at the start of the recording. This is crucial 

for the calculations within the loop (code not shown) and because gyroscope calibration was 

deemed difficult for EyePort, as discussed in the Areas in Interest section. Notice how the 

starting 0 seconds differs for each starting orientation in Figure 9. 

For example, if the lists contain values in the following format: 

headup = [[2,4],[6,9]] 

headlevel = [[0,2],[4,6]] 

headdown = [[9,11]] 

This means that the participant's head was level at the start of the recording for 2 seconds. 

Then there was a head-up state from 2 to 4 seconds, then head level for 4 to 6 seconds, 

head up again for 6 to 9 seconds, and finally head down for 9 to 11 seconds. If the 

participant started from the head-up orientation for 4 seconds, then the list should be 

headup = [[0,4]].  

The second information EyePort needs from the user is the degrees per second to detect 

the “jolt” during which the head orientation changes. This can be defined by the user in 

EyePort settings. Each time a participant moves their head with sufficient angular speed 



more than the user-defined degrees/second, the corresponding lists will be altered with 

start and end times based on the head state. 

To avoid false readings during the transition phase, the timers responsible for counting the 

head up/level/down times are temporarily paused. They are resumed when the head 

reaches an "expected" next state, and the gyroscope readings are settled close to 0 

degrees/second. There is an estimated loss of 2 seconds between head movements. So the 

timed lists shown earlier would realistically have the following format: 

headup = [[2.82,3.53],[6.23,8.66]] 

headlevel = [[0,1.53],[4.45,5.10]] 

headdown = [[9.23,10.35]] 

 

Figure 10 – Sample Head Orientation Times 

The percentages and total durations in Figure 10 (not the same as the timed list example) 

are calculated separately in another algorithm, taking their information solely from the three 

critical timed lists. 

 

 

 

 

 

 

 

 

 

 

 

 



Object Detection 
 

A major part of this algorithm’s functionality comes from the ImageAI open-source 

repository found at https://github.com/OlafenwaMoses/ImageAI. Additional helper codes 

were integrated into EyePort to use object detection. This library essentially allows the 

computer to automatically detect the objects being looked at and rename them before 

displaying them in the EyePort interface while not requiring internet connectivity. This is 

achieved using pre-trained models like a neural network to classify the objects. 

The library, along with the accompanying models for General Objects, Ships and Icebergs, 

and VISTA Diesel Engine, is what takes 90% of EyePort’s installation size (1.5 GB). Therefore, 

since Version 3.2.2, a lite release of EyePort was built to add these features as an optional 

add-on keeping installation sizes to a minimum. 

All Unique Areas of Interest are passed into this algorithm, which returns a list of “answers” 

containing the detection results. Using detection takes significantly longer, as multiple 

frames are being cropped into tiny squares to compare with the trained model. This requires 

intense CPU and GPU performance. A brief overview of the process is shown in Figure 11. 

Creating a pre-trained model involved the collection of over 500 images of ships and 

icebergs and screenshots of the VISTA Diesel Engine Simulator that had to be annotated 

manually in an annotation format called YOLO. This annotation contains information about 

the object and the coordinates of the object's bounding box in the image. A tool called 

LabelImg was used to mark the bounding boxes around objects and label each object in the 

image manually. Additional information can be found in the author’s documentation. 

The training process took about two days with 500 passes. Any objects not recognised are 

shown as “Detection Failure” in EyePort. 

 

Figure 11 – Object Detection Procedure 

Retrieved from https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv 

https://github.com/OlafenwaMoses/ImageAI
https://imageai.readthedocs.io/en/latest/
https://pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv


No-Go Zones 
 

This algorithm is very similar to the unique areas of interest detection algorithm. It uses the 

same image_similarity_measures library, but this time, the similarity matching 

tolerance is increased to 0.95 (95% matching needed). 

Also, the matching is done with pre-defined images located in EyePort\NoZones instead of 

Areas of Interest. Users can open this location using the “Define No Go Zones” button under 

Analysis Preferences. To define No-Go Zones, please refer to the user manual. 

  

Any objects matching this criterion will be displayed as a separate frame under the No-Go 

Zones section. 

 

 
 

 
 
 

 
 
 

 
 

Figure 12 – Sample No-Go Zones 
 
 

 

Radar Violation and Dead Man Switch 
 
These algorithms are smaller compared to the others discussed in this document. They rely 
heavily on the information incoming from the other algorithms. 
 
The radar violation algorithm checks for the “Radar” area of interest in the list of interests 
and keeps track of the times coming from the Start and End Times calculated in the Areas of 

Interest detection algorithm. 
 

Define No Go Zones 



 
 

Figure 13 – Radar Violation Detection Code 
 
The user can change the interval duration for this algorithm, which is stored in aviolate 

variable (Figure 13). The rest of the checks mentioned earlier are done in a small loop. If no 
violations are found, an information message is shown. Otherwise, an error message is 

generated. 
 
Lastly, the dead man switch checks the duration of the head orientation states and the areas 

of interest. If they are both too long (>45 seconds), the dead man switch will trigger. The 
code for this is only a few lines, as shown in Figure 14. 

 

 
 

Figure 14 – Dead Man Switch Code 
 



What happens next? 
 

This is what happens when the user clicks the “Analyze Now” button behind the scenes. 

After all the discussed algorithms are complete, the interface of EyePort is finally updated to 

show the result. The playback page is also enabled and will be ready for playback video with 

overlays. If, at any point, an unforeseen error occurs while executing all the algorithms, the 

“Failed to Analyse” Error (Figure 15) will be generated. 

 

Or.. 

Figure 15 – Final Result 


